.. _mpi_alltoallv: MPI_Alltoallv ============= .. include_body :ref:`MPI_Alltoallv`, :ref:`MPI_Ialltoallv`, :ref:`MPI_Alltoallv_init` - All processes send different amount of data to, and receive different amount of data from, all processes .. The following directive tells the man page generation script to generate multiple bindings for this file. .. mpi-bindings: MPI_Alltoallv, MPI_Ialltoallv, MPI_Alltoallv_init .. The following file was automatically generated .. include:: ./bindings/mpi_alltoallv.rst INPUT PARAMETERS ---------------- * ``sendbuf``: Starting address of send buffer. * ``sendcounts``: Integer array, where entry i specifies the number of elements to send to rank i. * ``sdispls``: Integer array, where entry i specifies the displacement (offset from *sendbuf*, in units of *sendtype*) from which to send data to rank i. * ``sendtype``: Datatype of send buffer elements. * ``recvcounts``: Integer array, where entry j specifies the number of elements to receive from rank j. * ``rdispls``: Integer array, where entry j specifies the displacement (offset from *recvbuf*, in units of *recvtype*) to which data from rank j should be written. * ``recvtype``: Datatype of receive buffer elements. * ``comm``: Communicator over which data is to be exchanged. * ``info``: Info (handle, persistent only) OUTPUT PARAMETERS ----------------- * ``recvbuf``: Address of receive buffer. * ``request``: Request (handle, non-blocking and persistent only). * ``ierror``: Fortran only: Error status. DESCRIPTION ----------- :ref:`MPI_Alltoallv` is a generalized collective operation in which all processes send data to and receive data from all other processes. It adds flexibility to :ref:`MPI_Alltoall` by allowing the user to specify data to send and receive vector-style (via a displacement and element count). The operation of this routine can be thought of as follows, where each process performs 2n (n being the number of processes in communicator *comm*) independent point-to-point communications (including communication with itself). .. code-block:: c MPI_Comm_size(comm, &n); for (i = 0, i < n; i++) MPI_Send(sendbuf + sdispls[i] * extent(sendtype), sendcounts[i], sendtype, i, ..., comm); for (i = 0, i < n; i++) MPI_Recv(recvbuf + rdispls[i] * extent(recvtype), recvcounts[i], recvtype, i, ..., comm); Process j sends the k-th block of its local *sendbuf* to process k, which places the data in the j-th block of its local *recvbuf*. When a pair of processes exchanges data, each may pass different element count and datatype arguments so long as the sender specifies the same amount of data to send (in bytes) as the receiver expects to receive. Note that process i may send a different amount of data to process j than it receives from process j. Also, a process may send entirely different amounts of data to different processes in the communicator. WHEN COMMUNICATOR IS AN INTER-COMMUNICATOR When the communicator is an inter-communicator, the gather operation occurs in two phases. The data is gathered from all the members of the first group and received by all the members of the second group. Then the data is gathered from all the members of the second group and received by all the members of the first. The operation exhibits a symmetric, full-duplex behavior. The first group defines the root process. The root process uses MPI_ROOT as the value of *root*. All other processes in the first group use ``MPI_PROC_NULL`` as the value of *root*. All processes in the second group use the rank of the root process in the first group as the value of *root*. When the communicator is an intra-communicator, these groups are the same, and the operation occurs in a single phase. USE OF IN-PLACE OPTION ---------------------- When the communicator is an intracommunicator, you can perform an all-to-all operation in-place (the output buffer is used as the input buffer). Use the variable MPI_IN_PLACE as the value of *sendbuf*. In this case, *sendcounts*, *sdispls*, and *sendtype* are ignored. The input data of each process is assumed to be in the area where that process would receive its own contribution to the receive buffer. NOTES ----- The specification of counts and displacements should not cause any location to be written more than once. All arguments on all processes are significant. The *comm* argument, in particular, must describe the same communicator on all processes. The offsets of *sdispls* and *rdispls* are measured in units of *sendtype* and *recvtype*, respectively. Compare this to :ref:`MPI_Alltoallw`, where these offsets are measured in bytes. ERRORS ------ .. include:: ./ERRORS.rst .. seealso:: * :ref:`MPI_Alltoall` * :ref:`MPI_Alltoallw`